
MULTIMEDIA METADATA PROCESSING:
A FORMAT INDEPENDENT APPROACH

Robbie De Sutter*, Christian Timmerer‡, Hermann Hellwagner‡, and Rik Van de Walle*

* Multimedia Lab, Ghent University, Belgium
{robbie.desutter, rik.vandewalle}@ugent.be

‡ Department of Information Technology (ITEC), Klagenfurt University, Austria
{christian.timmerer, hermann.hellwagner}@itec.uni-klu.ac.at

Department of Information Technology (ITEC)
Klagenfurt University
Technical Report No. TR/ITEC/05/1.02
February 2005

MULTIMEDIA METADATA PROCESSING:
A FORMAT INDEPENDENT APPROACH

Robbie De Sutter1, Christian Timmerer2, Hermann Hellwagner2, and Rik Van de Walle1
1 Multimedia Lab

Ghent University – IBBT, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium
E-mail: {robbie.desutter;rik.vandewalle}@ugent.be

2 Dept. of Information Technology (ITEC)
Alpen-Adria-Universität Klagenfurt, Universitätsstraße 65-67, A-9020 Klagenfurt, Austria

E-mail: {christian.timmerer;hermann.hellwagner}@itec.uni-klu.ac.at

 ABSTRACT
In multimedia applications, XML is being increasingly
used to represent metadata; examples are MPEG-7
multimedia description schemes and MPEG-21 usage
environment descriptions. As with the media data, the size
of, or the overhead induced by, the XML metadata is
important, particularly when used on constrained mobile
devices. Therefore, compression (binary encoding) of the
XML data becomes relevant to reduce this overhead.
Within the MPEG-7 standardization effort, a Binary
Format for Metadata (BiM) was developed, providing
good compression efficiency and facilitating random
access into, and manipulation of, the binary encoded bit
stream. However, using binary encoded XML should not
introduce interoperability issues with existing
applications, nor add additional complexity to new
applications. In this paper we investigate a solution for
this issue by handling the binary encoded XML data by
the XML parser. As such, applications do not need to be
aware of the type of encoding of the XML data. In this
paper, we introduce such an XML parser and evaluate its
usability in different scenarios. We measure the memory
requirements and compare the processing speed of parsing
binary encoded XML to plain text XML.

KEY WORDS
Multimedia Information Systems, Multimedia
Communication Systems, Multimedia Metadata, Binary
Encoded XML, MPEG-7 BiM

1 Introduction

As more and more data is structured, stored, and sent over
a network using the XML language, the main
disadvantage of XML is becoming an issue that no longer

 Acknowledgements. The research activities described in
this paper were funded by Ghent University, the
Interdisciplinary Institute for Broadband Technology
(IBBT), the Fund for Scientific Research-Flanders (FWO-
Flanders), the Belgian Federal Science Policy Office
(BFSPO), and the European Union.

can be ignored. XML encodes its data in plain text, thus
guaranteeing – to a certain level – platform independent
processing thereof. However, this also introduces a lot of
overhead, also known as the verbosity of the XML lan-
guage. It is this overhead that is the main disadvantage of
XML. This is especially true when using XML in con-
strained environments, e.g., mobile devices, where mem-
ory, processing power and network bandwidth are limited.
On the other hand, these devices become more and more
powerful and such constraints seem to be negligible. In
practice, however, such network-enabled devices are be-
coming smaller and smaller and usage of XML-based data
is increasing, i.e., similar constraints will apply to future
devices as apply to the devices we are using today.
While the World Wide Web Consortium (W3C) has rec-
ognized this problem and has created a task force to ad-
dress the issue1, the MPEG group has already standard-
ized a solution for the issue within MPEG-7 Part 1,
known as Binary Format for Metadata (BiM) [1][2]. BiM
was intended to binary encode multimedia descriptions
created by other parts of MPEG-7. However, this solution
turned out to be very generic as it is able to handle most
XML structured data, provided the data is valid to a given
XML Schema or Document Type Definition (DTD).
Furthermore, BiM achieves compression ratios compara-
ble to plain text compression algorithms [1][3]. On top of
that, BiM enables streaming of XML-based data, supports
manipulation of the data in the binary domain, and stan-
dardizes different commands to update XML data in an
optimized way.
It is our belief that, in order for binary encoded XML data
to be well adopted, it should not add any additional degree
of complexity for the application developers. Nowadays,
application developers that need to handle (plain text)
XML data, use an XML parser. It is desirable to use the
same parser if they want to handle binary encoded XML
data. Moreover, they should not need to be aware of the

1 More information on the W3C XML Binary
Characterization Working Group can be found on
http://www.w3.org/XML/Binary/

fact they are using binary encoded or plain text XML. It is
the parser’s duty to handle the XML data correctly.
The remainder of this paper is organized as follows. First,
in Section 2, we highlight related work. Next, in Section
3, we briefly explain the functionality of MPEG-7 BiM.
Section 4 introduces the XML parser architecture capable
of handling plain text XML and binary encoded XML.
Section 5 discusses the use cases against which we will
evaluate the parser. The results of this evaluation are
shown and discussed in Section 6. Finally, Section 7 con-
cludes this paper.

2 Related Work

In the sequel, we give a brief overview of related tech-
nologies and standards. Several standardization bodies
such as ITU-T2, ISO/IEC3 or W3C have recognized the
need for an alternative XML serialization. The W3C has
recently started with this activity which resulted in a first
working draft of relevant use cases [5]. It describes which
application areas would benefit from such an alternative
XML serialization. Other activities include the efficient
transportation of non-XML-based data within XML-based
data only, e.g., SOAP messages with attachments [6].
Besides the binary XML efforts within MPEG, ISO/IEC
has put some joint efforts with ITU-T towards an alterna-
tive XML serialization within the ASN.1 (Abstract Syntax
Notation One) group4. Therefore, mapping rules between
XML Schemas and ASN.1 schemas are defined [7][8] and
for ASN.1 instances efficient binary encoding schemes
such as Packed Encoding Rules (PER) are available [9].
In practice, however, no common API capable of han-
dling both types of data is available and transformation
between the two representations is uneconomical.
Finally, the Web service community has also recognized
this issue and is currently developing alternative XML
serialization schemes known as Fast Infoset [10] and Fast
Web Services [11]. The latter is built upon ANS.1 as de-
scribed above. The former uses an indexing mechanism
which associates an index to each XML element enabling
its usage for further occurrences of the same XML ele-
ment, i.e., highly repetitive content will benefit from this
approach. However, for small and complex XML docu-
ments the index table is again a burden and performance
results comparing these two approaches with other binary
XML encoding schemes are currently not available.

3 MPEG-7 Binary Format for Metadata

BiM was initially designed to binary encode MPEG-7
descriptions only. Currently, ISO/IEC has amended its

2 International Telecommunication Union
(http://www.itu.int/home/)
3 International Organization for Standardization
(http://www.iso.org), International Electrotechnical
Commission (http://www.iec.ch/)
4 The ANS.1 group is part of ISO/IEC JTC 1/SC 6/WG 7.
See http://www.jtc1sc06.org/ for further details.

specification to support all kind of XML-based data as
long as an XML Schema or DTD is available.
The main features of BiM can be summarized as follows:

― High compression ratio
― Streaming capabilities
― Fast random access
― Filtering and parsing within the binary domain
― Dynamic (partially) updates.

MPEG-7 BiM is an XML Schema aware encoding
scheme for XML documents [1], i.e., it uses information
from the XML Schema to create an efficient alternative
serialization of XML documents within the binary do-
main. This schema knowledge enables the removal of
structural redundancy, e.g., element and attribute names,
which achieves high compression ratios with respect to
the document structure. Furthermore, element and attrib-
ute names as well as data are encoded by using dedicated
codecs based on the data type (integer, float, string) which
further increases the compression ratio. However, one of
the main features of BiM is that it provides streaming
capabilities for XML-based data which is one of the main
disadvantages of plain text XML. Therefore, BiM divides
the XML tree into access units (AUs) containing one or
more fragment update units (FUUs). Each FUU includes
the FU command, FU context, and FU payload which are
described briefly in the following:

― The command specifies the decoder action for
the corresponding fragment which can be either
add, delete, replace, or reset, i.e., BiM also
provides partial updates of an XML document.

― The context is used to uniquely determine the
location of the fragment in the XML document.

― The payload contains the actual XML data
according to the context.

Figure 1 illustrates how an XML document is divided into
AUs and is streamed over the network. In particular, it
shows how a sub-tree of the whole XML document is
transmitted over the network and added to the description
tree at the receiver side (cf. dotted line).

Figure 1: Streaming XML Documents over the

Network by using Access Units.

By definition, each AU can be decoded separately while
ensuring validity against the XML Schema. The FUUs are
processed according to the FU command, i.e., added to,
deleted, or replaced from the (partially) instantiated XML
document. The reset command resets the BiM decoder
and starts again with the initial description tree. Especially
the replace command enables selective updates of (parts
of) a document which is for example useful when

transmitting updates of the usage environment from the
consumer to the provider as described in Section 5.2.
Finally, the FUU specification allows to perform filter
operations within the binary domain, i.e., by means of
simple bit pattern matching instead of time-consuming
string comparisons. For further information the reader is
referred to [1] and [2].

4 Handling Binary Encoded XML data

As explained in the introduction, it is desirable that using
binary encoded XML data in applications, does not add an
additional layer of complexity and that, optimally, the
applications using the XML data should not need to be
aware of the fact that the XML data is binary encoded or
regular plain text. Current applications are using an XML
parser to handle the XML data stream and it is desirable
that applications should be able to use the same parser for
binary encoded XML. Then, it would be up to the parser
to process binary encoded XML data. Former evaluations
of different XML parser models [4] have shown that the
Curser Model seems to be perfectly suitable to parse
XML data, both in the plain text as well as binary domain.
Furthermore, the Cursor Model allows one to exploit all
functionalities MPEG-7 BiM offers.
As Java does not have a parser compliant to the Cursor
Model at this time, we created an interface that defines the
signatures of the necessary methods. In our implementa-
tion of this interface, the bootstrap method is capable of
parsing plain text XML documents and BiM encoded
XML documents. This results in an internal XML tree
representation as illustrated in Figure 2. The tree can be
traversed by using the cursor navigation methods, read by
the token consumption methods, and written by the token
manipulation methods.
An application uses the bootstrap method to parse an
XML document without being aware if this document is
plain text or BiM encoded. It is the bootstrap method’s

responsibility to figure out how the received XML docu-
ment is encoded. This can be done either trivially by
looking at the file extension, or more advanced by using
the mime type information or by inspecting the first bytes
of the stream. Other detection algorithms are possible.
Once the bootstrap method has identified the encoding, it
can process the data. Our parser implementation uses the
very fast and lightweight XML Pull Parser5 to handle the
plain text data. The BiM encoded data is handled by a
modified version of the MPEG-7 BiM reference software
(July 2004 version) [12]. The modification makes it possi-
ble that, during decoding, the internal XML tree repre-
sentation is created on-the-fly. The internal tree is created
by reading the source data only once. This is true for both
plain text as well as binary encoded XML data streams.
Another issue that arises when using BiM is the fact that
the BiM decoder must dispose of the correct XML Sche-
mas. For this, the current reference software implementa-
tion requires a decoder initialization file. As it is intoler-
able that the application should provide this file, we
solved this issue by creating a repository of all XML
Schemas used in the tests. Thus, it is the parser imple-
mentation that provides the decoder initialization infor-
mation and not the application.

5 Evaluation of the Architecture: Use Cases

In order to asses the usefulness of the parser described in
the previous section, we evaluate it against two distinct
use cases: (1) data storage and (2) usage environment
notification.

5.1. Use Case 1: Data Storage

The first use case evaluates the usefulness of binary en-
coded data as a way to reduce the required disk space to
store XML data, but maintaining fast access and manipu-
lation of the data. BiM has the advantage over traditional
plain text compression techniques that the compressed
data does not need to be decompressed before handling.
When using the parser described in the previous section,
the application is not even aware whether or not the data
was binary encoded. In this use case, the overhead associ-
ated to encode the data and to bootstrap the parser are
most important. Memory requirements are less important
as long as they are not exuberant.
In this use case we analyze six files which uses the same
XML Schemas, but differ in file size: from tiny and small
(2 – 10 kB) over medium (230 kB) to large and very large
(500 – 4000 kB).

5.2. Use Case 2: Usage Environment Notification

Multimedia resource adaptation is becoming more and
more important in order to achieve Universal Multimedia
Access [13]. Video and audio resources are dynamically

5 Information about XML Pull Parser can be found on
http://www.xmlpull.org/

Figure 2: XML Cursor Model Parser Architecture.

cursor navigation
token consumption
token manipulation

application

XML Cursor Model Parser

<?xml version="1.0"?>
…

 textual
domain

binary
domain

bootstrap: load XML document

cursor navigation
token consumption
token manipulation

internal XML
tree representation

XML
document

15 F5 4E 98 36 AD
…

XML
document

modified so that the modified resource is optimized for
the target application or device. MPEG-21 Part 7, Digital
Item Adaptation (DIA), standardizes various tools that
can help perform multimedia resource modifications [14].
DIA specifies, among others, description formats to de-
scribe the usage environment/context in which, for exam-
ple, such audio/video streams are consumed. These usage
environment description (UED) formats provide means
for describing information about the (end) user, the termi-
nal, the network, and the natural environment. In particu-
lar, the UED defines XML Schemas together with a tex-
tual description thereof. In addition to the MPEG-21 DIA
standard, other standards have emerged allowing applica-
tions or devices to describe their usage context [15]. All
most recent standards have one thing alike: XML is used
to structure the usage context. However, for this use case
we use the UED part of the MPEG-21 DIA standard.
In practice, once a device or application has collected its
usage context, it sends this information to the server. The
server uses the information as one of the inputs for an
adaptation engine. The adaptation engine adapts the mul-
timedia resource appropriately so the originating device or
application retrieves an optimized multimedia resource.
In this scenario there are two issues that need to be con-
sidered:
1. Usually, the usage context is not static, e.g., network

conditions such as the available bandwidth fluctuate.
When this occurs, the server (or any intermediary
node which is capable to benefit from this informa-
tion) must be informed of these changes.

2. Most end user devices requiring an adaptation of the
multimedia content have usually limited memory or
processing capabilities, e.g., handhelds or cell
phones. Furthermore, these devices connect to a
server over a constrained network connection where,
in some cases, the end user pays a fee based on the
number of bytes transferred, e.g., when using a Gen-
eral Packet Radio Service (GPRS) connection.

Due to the dynamic partial update capabilities and high
compression ratios, BiM seems to be the ideal candidate
for dealing with the above issues. Firstly, BiM is capable
of encoding only the UED information that has changed
and needs to be transmitted over the network. This elimi-
nates the need to send the full usage context information
whenever a change thereof occurs. And secondly, with
regards to the constrained network connection, BiM re-
duces the number of bytes to be sent in two ways: by bi-
nary encoding of the information and by only sending the
updated information. This can result in a huge saving, not
only in required bandwidth, but also in the fee the end
user pays. However, to achieve these possible advantages,
the device itself must be able to encode XML data by a
MPEG-7 BiM compliant encoder. Therefore, the required
memory for the encoding is also important in this sce-
nario.
To evaluate this scenario we created a conceivable usage
context compliant to MPEG-21 DIA UED which is binary
encoded using the BiM reference software. Both the plain
text version and the binary encoded version of the usage

context is sent as an attachment of a Simple Object Ac-
cess Protocol (SOAP)6 message to a server. When receiv-
ing the SOAP message, the server bootstraps the parser
with the file in the attachment. Thereafter, three kinds of
updates are sent from the device to the server:

― Small modification: the bandwidth of the
network changes.

― Medium modification: the terminal’s display
information changes.

― Big modification: the user and the natural
environment change.

For the plain text encoding, these modifications are ap-
plied to the initial complete usage context description and
result in three new full UEDs. For the BiM encoding,
three access units are created. The small modification AU
contains one FUU that replaces the existing node in the
initial complete UED with the updated one. The medium
modification requires two FUUs: one to replace the ex-
isting information about the display with the new infor-
mation and a second FUU to remove information about a
second display that was present in the initial description.
The big modification also contains two FUUs replacing
the existing user information and the natural environment
information respectively.

6 Results and Discussion

We have evaluated each use case by measuring the time
and the maximum heap size that is required to bootstrap
the parser with an XML document, either in plain text or
BiM encoded. Additionally, the same statistics are pro-
vided for the BiM encoding process.
The run time results were obtained as follows. Due to the
fact that the BiM en-/decoder constructs a finite state
automaton based on the used XML Schemas – which is a
time consuming process – we provide the measurements
for the first run and an average run based on five con-
secutive runs. Additionally, each run was performed four
times and the average was calculated thereof. This was
necessary to eliminate possible time fluctuations during
the measurements, e.g., due to a run of the garbage col-
lector. The automaton does not need to be reconstructed
unless the XML Schema changes. We have not consid-
ered a modification of the XML Schema in our use cases.
However, for further information on the creation and us-
age of the automaton the reader is referred to [2].
The experiments were performed on a machine with an
Intel Pentium 4 Northwood processor running at 3.2 GHz
with hyperthreading disabled and 512 MB RAM. All the
tests ran on Windows XP Professional Service Pack 2
with Java version 1.4.2. The JProfiler7 3.1 provided the
memory measurements, i.e., the maximum heap size.

6 SOAP is a W3C Recommendation that specifies a
lightweight protocol intended for exchanging XML data
in a decentralized, distributed environment (see also
http://www.w3.org/TR/soap/ for further information).
7 Java Profiler, JProfiler, can be found on http://www.ej-
technologies.com/.

Note that the maximum heap size is not the actually con-
sumed memory size, but the maximum size of heap the
Java Virtual Machine (JVM) has reserved. However, we
used this value as the amount of memory the JVM needs
in order to execute the desired operations, even though
not all of the reserved memory is actually used.
For binary encoding of the XML documents we used the
MPEG-7 BiM reference software. It is important to em-
phasize that the reference software is not optimized in
terms of performance, neither in memory usage nor proc-
essing speed.
Finally, this evaluation does not focus on the compression
efficiency of BiM which is discussed intensively in [1][3].

6.1. Results

Table 1 shows the run times to encode and to bootstrap
the parser for the first use case as well as the required
maximum heap size. Additionally, the file sizes of both
the plain text and BiM encoded XML documents are
given. Table 2 shows the analogous results for use case 2
including the size of the SOAP messages.

6.2. Discussion

First, we discuss the run times results listed in Table 1 and
Table 2, i.e., encoding and bootstrap times.
The difference between the first run and the average run
is very big. When using BiM, this can be explained by the
creation of the automaton as discussed earlier in this sec-
tion. However, the gap is too broad and furthermore we
also notice a difference in the first and average run of the
plain text tests. This can be explained by the fact the all
required files, i.e., class files and source XML document
files, are already loaded at least once for the first run and
thus they are still available in a cache. This results in less
I/O operations – a very time consuming operation.
We further see the influence of the used XML Schemas
on the encoding and bootstrap time: while the complete
UED file of use case 2 is about the same size as the small
file of use case 1, it takes significantly longer to process
the UED file. The more complicated and larger UED
XML Schema compared to the XML Schema used in use

case 1 explains this difference. This also justifies our
choice to use the same XML Schema for all five files in
use case 1. Another observation is the fact that small plain
text files are always processed faster then their binary
encoded counterparts. Medium sized files are – for an
average run – processed faster when they are binary en-
coded. However, when we take the time needed to encode
these files into account, then only very large files profit
from the BiM encoding in terms of processing speed. The
reason why the bootstrap operation for update AUs in use
case 2 is relatively slow compared to the file size can be
explained by the fact that the existing internal XML tree
representation is first cloned – which is necessary to sup-
port the “reset” FUU command – and that the FUU con-
text must be located in the tree.
For the maximum heap size measurement the conclusion
is as follows: the larger the input file, the more memory is
required. In Table 2, the difference in required memory
for the complete UED and the updates is due to the crea-
tion and storage of the clone of the existing XML tree.
Additionally, Table 2 shows also the size of the SOAP
messages used to send the information from a client de-
vice to the server. Using SOAP only implies a small and
constant overhead penalty. Thus, SOAP can be used as a
messaging protocol for binary encoded XML. Further-
more, the table shows that when sending the initial de-
scription and all updates in binary encoded format, only
15% of the bytes are required compared to doing the same
with plain text encoding. In particular, this will result in
higher expenses for the end user when using GPRS con-
nections as mentioned in Section 5.2.

7 Conclusion

As XML is nowadays used to store even more (meta-)data
the verbosity of the format is a disadvantage that can no
longer be ignored. Creating a binary representation of the
plain text XML data is a solution for this problem. This
alternative XML representation should neither imply
interoperability issues with existing applications nor
should it add more complexity to new applications.

Table 1: Results for encoding/bootstrap time and memory requirements for use case 1.

File 1: tiny File 2: small File 3: medium File 4: large File 5: very large

Plain text BiM Plain text BiM Plain text BiM Plain text BiM Plain text BiM

File size (bytes) 1,055 149 11,580 1,937 30,667 2,793 550,677 94,332 4,122,543 1,136,997

First run - 613.3 - 882.8 - 2793.0 - 4,773.8 - 21,750.0 Encoding
time (ms) Average run - 93.1 - 155.5 - 1489.8 - 3,386.8 - 20,586.8

First run 11.8 344.0 19.5 344.0 109.5 347.5 238.3 359.5 37,738.5 535.0 Bootstrap
time (ms) Average run 0.8 25.1 4.0 26.7 75.1 28.1 185.2 34.5 37,680.5 161.8

Bootstrap 1,900 1,900 1,900 1,900 4,250 1,900 8,750 1,900 65,000 6,500 Maximum
heap size
(Kbytes) BiM encoding 3,150 3,350 7,890 13,950 65,000

In this paper, we presented a solution for the verbosity
issue by applying MPEG-7 BiM to plain text XML and
thus creating a compact representation of the XML-based
data. We demonstrated an XML parser capable of han-
dling plain text XML and BiM encoded XML. By creat-
ing a parser capable of handling both encoding types, ap-
plications making use of this parser do not need to be
aware if the XML data they use in the application is BiM
encoded or regular plain text.
We evaluated the usefulness of this parser for two distinct
use cases. The results show that using binary encoded
XML data does not impose (extensive) additional memory
requirements. Parsing the data is, however, slower
compared to plain text XML parsing with the restriction
that non-optimized reference software was used.
By ensuring that only the XML parser should be aware of
the type of encoding, applications can support binary en-
coded XML directly and without any additional complex-
ity. The loss of human readability of XML file is amply
compensated for by the reduction in the file size, espe-
cially when sending this data over a network as described
in the second use case.

References

[1] U. Niedermeier, J. Heuer, A. Hutter, W. Stechele, and
A. Kaup, An MPEG-7 tool for compression and streaming
of XML data, Proc of the 2002 IEEE International
Conference on Multimedia and Expo (ICME), vol. 1,
Lausanne, Switzerland, 2002, 521–524.
[2] J. Heuer, C. Thienot, and M. Wollborn, Binary
Format, in: B.S. Manjunath, P. Salembier, and T. Sikora
(eds.), Introduction to MPEG-7: Multimedia Content
Description Language, John Wiley & Sons Ltd., NJ, 2002.
[3] C. Timmerer, H. Hellwagner, J. Heuer, C. Seyrat,
and A. Hutter, BinaryXML – A Comparison of Existing
XML Compression, ISO/IEC JTC1/SC29/WG11
MPEG2004/M10718, Munich, Germany, March 2004.
[4] R. De Sutter, C. Timmerer, H. Hellwagner, and R.
Van de Walle, Evaluation of Models for Parsing Binary

Encoded XML-based Metadata, Proc. of the 12th IEEE
Symposium on Intelligent Signal Processing and
Communication Systems, Seoul, Korea, 2004, 419 – 424.
[5] M. Cokus and S. Pericas-Geertsen (eds.), XML
Binary Characterization Use Cases, W3C Draft, 2004.
[6] J. J. Barton, S. Thatte, and H. F. Nielsen (eds.),
SOAP Messages with Attachments, W3C Note, 2000.
[7] ITU-T and ISO/IEC, Encoding Using XML or Basic
ASN.1 Value Notation, Rec. X.693 (2001), ISO/IEC
8825-4:2001, 2001.
[8] ITU-T and ISO/IEC, Mapping W3C XML Schema
Definitions into ASN.1, ITU-T Rec. X.694 (2004),
ISO/IEC 8825-5:2004, 2004.
[9] ITU-T and ISO/IEC, Specification of Packed
Encoding Rules (PER), ITU-T Rec. X.691 (2002),
ISO/IEC 8825-2:2002, 2002.
[10] P. Sandoz, A. Triglia, and S. Pericas-Geertsen, Fast
Infoset, Sun Developer Network Technical Article, June
2004. http://java.sun.com/developer/technicalArticles/
xml/fastinfoset/.
[11] P. Sandoz, S. Pericas-Geertsen, K. Kawaguchi, M.
Hadley, and E. Pelegri-Llopart, Fast Web Services, Sun
Developer Network Technical Article, August 2003.
http://java.sun.com/developer/technicalArticles/
WebServices/fastWS/.
[12] ISO/IEC 15938-6:2003 Information technology -
Multimedia content description interface - Part 6:
Reference software, 2003.
[13] R. Mohan, J. R. Smith, and C.-S. Li, Adapting
Multimedia Internet Content for Universal Access, IEEE
Transactions in Multimedia, 1(1), 1999, 104–114.
[14] A. Vetro and C. Timmerer, Overview of the Digital
Item Adaptation Standard, to appear in IEEE
Transactions on Multimedia, Special Issue on MPEG-21,
Feb. or Apr. 2005.
[15] R. De Sutter, F. De Keukelaere, and R. Van de Walle,
Evaluation of Usage Environment Description Tools,
Proc. of the 2004 International Conference on Internet
Computing, Las Vegas, NV, USA, 2004, 66–72.

Table 2: Results for encoding/bootstrap time, SOAP message size, and memory requirements for use case 2.

Complete UED Small change Medium change Big change

Plain text BiM Plain text BiM Plain text BiM Plain text BiM

File size (bytes) 8,701 1,714 8,704 305 8,459 677 13,594 1,835

First run - 1,335.8 - 1,328.0 - 1,328.0 - 1,547.0 Encode time
(ms) Average run - 292.2 - 281.3 - 284.3 - 362.6

First run 12.0 992.3 19.3 355.3 19.3 363.4 15.3 453.0 Bootstrap
time (ms) Average run 3.9 207.2 4.6 197.7 1.6 195.4 3.2 183.7

SOAP message size (bytes) 9,060 2,086 9,063 677 8,818 1,049 13,947 2,207

Bootstrap 1900 4550 1900 7050 1900 7050 1900 7050 Maximum
heap size
(Kbytes) BiM

encoding 7650 7650 7650 7650

